107相關與回歸分析研習會

相關與回歸之正確使用

呂秀英 場長
iying@mdais.gov.tw
苗栗區農業改良場

內容

- 1. 基本概念
- 2. 相關分析
 - 2.1 簡單相關係數
 - 2.2 相關的濫用及誤用
 - 2.3 相關分析結果發表的正確呈現
- 3. 回歸分析
 - 3.1 簡單(直線)回歸
 - 3.2 曲線(非線性)回歸
 - 3.3 複回歸
 - 3.4 逐步回歸
 - 3.5 回歸的濫用及誤用
 - 3.6 回歸分析結果發表的正確呈現

1.基本概念

資料如何獲得?

❖觀測(調查)研究

- 只在不干擾情形下觀察或測量目標對象的特性(稱為變數)以 蒐集資訊,如問卷調查、倉庫害蟲調查等。
- 觀測研究之目的,是用來描述一個團體或一種情況。
- 取樣調查是觀測研究中很重要的一種。

❖試(實)驗

- 會對某個體作某件事情(處理),然後觀測個體如何反應,如 施以不同藥劑對種子發芽影響、不同飼料對牛體重影響等。
- 實驗之目的,通常要了解某種處理是否會確實對所測量性 狀(即變數)引起某種反應。
- 試驗設計重於分析。

農業試驗研究資料分析之主要目的

❖比較某變數在不同處理間的 平均值差異性

變方分析表(ANOVA)

Source	DF	MS
Treatment	3	1350 **
Error	8	56

變方分析、多重比較等

處理平均值多重比較表

T1	T2	T3	T4
3.5 b	4.2 b	9.0 a	1.5 c

- ❖ 探討兩變數間的關聯性
 - 相關分析等 相關係數 r=0.89 **
- ❖探求反應變數受到影響因子的影響程度

■ 回歸分析等

回歸式 Y=2.2 + 5.5 X, $R^2=0.84$, Prob=0.001

分析資料集的來源與形式

▲ 變方分析/多重比較

處理	重複	變 數
T1	1	
T1	2	
T1	3	
T1	4	
T2	1	
:		
:		
T4	3	
T4	4	

- 資料取得之前要先經適當的試驗設計
- 分析時僅針對<mark>個別</mark> 變數
- 一定要有重複
- 分析變數要符合變 方分析使用前提之 逢機常態資料
- 處理資料形式可為量化(如濃度)或僅是名義 (如品種名稱),使用統計軟體分析時一定要指定處理欄位

◆相關分析 ◆回歸分析

處理或取樣點	變 數 1	變 數 2
T1		
T2		
T3		
T4		
T5		

- 資料來源為試驗 或取樣調查
- 分析時針對兩個 或兩個以上變數
- 若原始資料有重 複 · 分析時通常 取其平均值
- 分析變數皆為符合相關或回歸使用前提之可量化資料
- 軟體分析時處理 的資料形式不重 要,且無須指定

- 探求作物某兩性狀間
- 雜草種子數目與成長日數間
- 乳牛體重與泌乳量間
- 膠質蛋白溶解度與pH值間

....兩變數關係是否存在

- 乾物重受温度
- 生長速率受施肥用量
- 昆蟲族群致死率受殺蟲劑濃度
- 反應物含量受合成時間

.....之*影響程度*

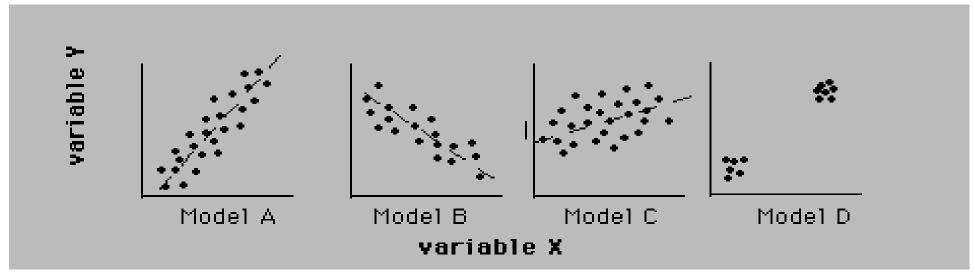
探討變數間的變異程度是否存在某種關係或其強度,未必等於因果關係→最好都不要將變異和因果混為一談

以下是一些相關回歸不等於因果的實例:

- 美國超商發現尿布與啤酒的銷售量有高度正相關 → 買尿布(因)導致愛喝啤酒(果) *X*
- 睡眠與心智健康存在關聯性 → 睡眠時數異常(因)導致失智症(果) 🔏
- 吃口香糖比率與犯罪率間存在正相關→吃口香糖(因)導致犯罪(果) 🔏
- 作物乾物重受溫度之影響呈現直線關係→溫度是乾物重增加之原因 🔏

在進行相關或回歸分析前,需先瞭解變數間 呈現何種關係--散佈圖(scatter plot)

各種可能散佈圖:



A:X,Y有正向關係,Y隨X增加而增加

B:X,Y有負向關係,Y隨X增加而減少

C:X,Y無一定關係

D:X,Y表面上看來有比例關係,但實際上是由2個異質族群所構成,各群內X,Y無關係存在,但從族群平均值來看則呈現X,Y間具有比例關係。故必須先探求構成異質族群的原因,而由此可能會獲得難以預料的重要結果。

兩個變數資料常用來探討的問題

相關(correlation)

- ✓ 相關是指兩個變數之間直線關聯的強度與方向
- ✓ 瞭解相關,通常有二種方式,一為**繪製資料散佈圖**,另 為**計算相關係數 (correlation coefficient)**

預測(prediction)

- ✓ 當兩變數相關存在時,可進行簡單直線或曲線回歸分析 (simple linear/non-linear regression analysis),通常 由一個解釋變數(independent variable,或稱自變數、 獨立變數、預測變數, X),來預測一個反應變數 (dependent variable,或稱隨變數、依變數、被預測變 數,Y)
- ✓ 當欲利用多個解釋變數(X1,X2,...)來預測一個反應變數 (Y)時,則使用**複回歸分析**(multiple regression analysis)。

相關與回歸的使用場合差異性

	試驗目的	數據性質	
相關分析	探知兩變數X,Y(無反應變數與解釋變數之分)間的相互關聯程度	X,Y為不可自由變動的常 態隨機變數 例如所調查的兩數量性狀	
回歸分析	描述反應變數Y受到解 釋變數X的 <mark>影響程度</mark>	Y為常態隨機變數;而X通 常為可自由選擇或控制的 固定值(模式I回歸),例如 所設定之不同生長箱溫度 或所施用之不同藥劑濃度	

註1:若解釋變數X不是固定值,則使用模式II回歸

註2:模式I之回歸係數由最小平方法(least squared method. LS) 估得 (傳

統方法,一般統計軟體回歸分析皆以此作為內設值)

模式II之回歸係數由最大概度法(maximum likelihood method, MLE) 估得 (某些統計軟體如SAS另提供可使用MLE的廣義線性模型)

變數的常態性檢定

- ✓ 常態分布是最常見的連續分布,是統計顯著性 測驗最常見的理論基礎
- μ X
- ✓ 呈鐘形的對稱曲線,平均、中位數和眾數都位於同一點上
- ✓ 自然界許多事件接近常態分布,例如:身高、體重、瞳孔距離、 眼球屈折率等
- ✓ 當其他分布的觀測值個數n很大時,往往亦漸呈常態分布
- ✓ 若干變值本非常態,可進行資料轉換使其接近常態分布

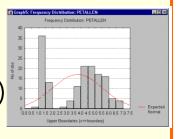
1. 配適度測驗:

- Shapiro-Wilk test
- Kolmogorov-Smirnov test
- Cramer-von Mises test
- Anderson-Darling test

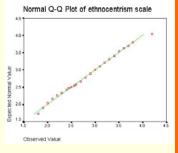
上述統計量倘不顯著,代表常態。但樣本太小,不易不顯著;而樣本太多,則容易顯著,因此最好同時配合圖示方法來判斷常態性. (SAS提供上述4種或後3種統計量,視版本和指定選項)

2.圖示方法:

• Histogram(直方圖) 分布形狀要「看起來是常態」,但小樣本場合(<50) 不太能有效看出資料真正 的分布型態



• Probability plot(機率圖) 簡稱Q-Q plot, 近於直線 為常態,是最常用且有效 的常態性檢測圖示工具, 但有時會流於主觀判斷



並非所有資料都一定呈常態分布

產量、乾物質重、株高 生育日數、開花日數....

- •測量(measure)資料形式
- •呈常態分布

防治率、危害率、落果率、罹病度、雜草覆蓋率、成功率、感染率...

- 連續變數
- •百分比(%)資料形式
- •呈二項分布

開花數、收穫果數、 培植體數...

- •離散變數
- 個數(count)資料形式
- 樣本夠大時可趨於常態分布

細菌數、蟲數、被害果數、雜草株數、罹病植株數...

- •離散變數
- 個數(count)資料形式
- 呈倍數成長的非線性資料或 Poisson分布

轉換方法的常見選擇(一)

- ❖呈倍數成長的非線性資料,其變方和平均值間通常呈比例關係
- :例如罹病植株數或蟲數(但組織培養培植體數通常不呈倍數

成長・故不屬此類)→對數轉換

設原始資料為Y,採用log(Y)轉換;

若資料含有0時,用log(Y+1)轉換

(用log₁₀或log_e均可, 但人工計算上前者較方便)

❖由小的計數值所組成時的Poisson分布資料, 其變方等於平均值:例如在一個培養皿之菌落數或區域內某一指定物種的蟲數

· 產蛋數或植株數)開方根轉換

設原始資料為Y, 採用 \sqrt{Y} 當資料大都<15尤其等於0時,用 $\sqrt{Y}+\frac{1}{2}$ 當所有值都 ≤ 2 ,用 $\sqrt{Y}+\sqrt{Y+1}$

轉換方法的常見選擇(二)

❖以比例值呈現之<u></u><u>可資料(不呈常態分布時)</u>:例如種子發芽或單位試區內感染植株的比例,當所有數值都均勻落在各種可能比例值,或僅集中在0-20%與80-100%兩極端比值→角度轉換 設原始比例為Y,則採用 \sqrt{Y} (即 $\sin^{-1}\sqrt{Y}$) 若其中資料數值為0,則該值用 $\arcsin\sqrt{I/(4n)}$ 若其中資料數值為1,則該值用 $\arcsin\sqrt{I-I/(4n)}$ (n為形成比例值的觀測個數,而轉換後的值可採用弳度或度表示) (但當資料落在30-70%之間無須轉換;若資料為0~20%或80~100%之極端值而非同時存在兩邊端極值時,採開方根轉換 \sqrt{Y} ,但80~100%要先以被100%減去後的值再轉換)

※注意:上述比例值轉換所代入公式的Y值必須是0~1間比例值而非百分比%!! 如25%→Y=0.25

- **❖等級(序位)資料:常態計分=(Y-\mu)/** σ (μ , σ 各為平均和標準差)
- ❖計量反應資料:
 - 機率值(probit=5+(y-μ)/σ)
 - 對數值(logit=log(p/(1-p)), p=%data)

活用Excel函數進行資料轉換

轉換方法	Excel函數		
Log(Y) log(Y+1)	LOG10(Y) 或 LN(Y) LOG10(Y+1) 或 LN(Y+1)		
$ \sqrt{\frac{Y}{Y}} $ $ \sqrt{Y} + 0.5 $ $ \sqrt{Y} + \sqrt{Y} + 1 $	SQRT(Y) SQRT(Y+0.5) SQRT(Y)+ SQRT(Y+1)		
arcsin \sqrt{Y} arcsin $\sqrt{1/(4n)}$ arcsin $\sqrt{1-1/(4n)}$	ASIN(SQRT(Y)) ASIN(SQRT(1/(4*n))) ASIN(SQRT((1-1/(4*n))) ASIN(SQRT((1-1/(4*n)))) P為0~1數值非 百分比值, 内為形成比例值 的觀測個數		

注意:arcsin角度變換也可改用DEGREES(ASIN(SQRT(Y))函數

) 動動腦-1

~不是所有兩變數都可同時進行相關與回歸~

- ▶ 用「相關」或「回歸」?
- ▶ 當使用回歸時,何者是「反應變數(Y)」、「解釋 變數(X)」?
 - 樹齡 *Vs* 樹高
 - 體重 *VS* 血壓
 - 汽油價格 *vs* 搭捷運乘人數
 - 殺草劑濃度 *vs* 雜草死亡率
 - 盤固草產量 VS 氣象因子

2.相關分析

2.1簡單相關係數

Pearson product-moment correlation, 簡稱simple correlation

相關是指在同一樣本空間兩個變數X,Y之間**直線關聯的方向和強度,X,Y**無解釋變數與反應變數之分並都符合**常態隨機**,兩變數間的關聯強度以**相關係數(r)**表示

mean of X
$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{S_x} \right) \left(\frac{y_i - \overline{y}}{S_y} \right)$$
SD of X
$$SD of X$$
mean of Y
$$SD of X$$

利用t法檢定r是否顯著存在 (r是否顯著異於0)

$$|t| = \frac{|r|}{\sqrt{\frac{1-r^2}{n-2}}}$$
 當t值顯著性機率值: Prob(t) < 0.05 顯著 (*) < 0.01 極顯著 (**)

SAS輸出範例: 欲探討某種作物4個農藝性狀(x1, x2, x3, x4)兩兩之間的相關性,各性狀均逢機取出10株進行調查

Pearson Correlation Coefficients, N = 10 Prob > r under H0: Rho=0				
	x1	x2	х3	х4
x1 x1	1.00000	0.97417 <.0001	0.98350 <.0001	0.97341 <.0001
x2 x2	0.97417 <.0001	1.00000	0.99510 <.0001	0.93972 <.0001
x3 x3	0.98350 <.0001	0.99510 <.0001	1.00000	0.96041 <.0001
x4 x4	0.97341 <.0001	0.93972 <.0001	0.96041 <.0001	1.00000

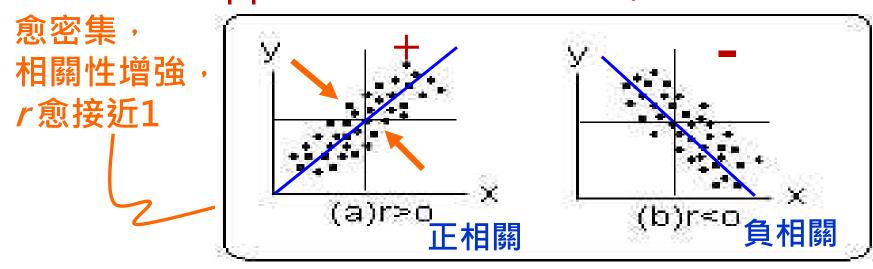
x1與x2間的相關 係數0.97417,其 顯著性機率值 Prob<0.0001, 即可寫成

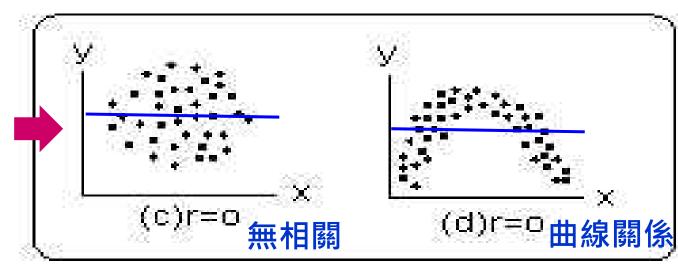
r=0.97**

其他成對變數之分 析結果類推

相關係數的範圍, $-1 \le r \le 1$

|r|值大小表示強度,值的+,-表示方向





相關分析的結果解讀

- 【例1】自某校隨機抽取46名學生,檢定其大一與大四時體重間的關係,相關分析結果 r = 0.9431, Prob <0.0001
 - →兩者間呈極顯著的正相關關係,相關係數為0.94**
- 【例2】自某作物品種隨機抽取各5片葉片,檢定其葉綠素含量與葉片厚度間的關係,相關分析結果 r = 0.8712, Prob =0.104
- →兩者間的正相關係數雖達0.87,但未達顯著水準5% (此是因為觀測數目n太小,故r雖大到0.87,但卻顯得無意義,相關性結果仍不足採信) → 宜增加樣本數
- 【例3】自某校隨機抽取200名學生,檢定其大一與大四時體重的關係,相關分析結果 r = 0.2501, Prob=0.002
 - →兩者間呈極顯著的正相關關係,相關係數為0.25**
- (此結論顯得荒謬!!! r僅有0.25,應不足以認定為正相關,但卻因觀測數目n太大,故檢定結果呈極顯著關係)

$$|t| = \frac{|r|}{\sqrt{\frac{1-r^2}{n-2}}}$$

r的t法顯著性檢定中,由於t值大小 受到觀測個數n的影響,因此 當n太大時t值較大而易顯著; 當n太小時t值較小而不易顯著

前述【例3】相關分析的正確作法

若樣本數太多,常導致r值不大但顯著;對此,宜先 判斷r值是否真得已大到足以充分認定是正或負相關 (至少r絕對值>0.5),再看其值是否已達統計上顯著 水準。

千萬別僅直接以顯著性結果來對r下結論,卻忽略了r 值大小!

2.2 相關的濫用及誤用

(1)當心「無意義相關」

- ---- 以下皆是無意義相關,應避免濫用----
- > 單株產量與公頃產量間呈正相關?
- > 地上部與地下部乾重比例呈負相關?
- > 調查性狀在不同取樣時間之間呈正相關?
- > 牛胃和羊胃的反芻能力呈正相關?

(2)不是所有形式的資料都能 進行相關分析

定量資料 vs 定量資料

(產量vs葉面積)

符合常態隨機

(簡單)相關

定性(等級)資料 vs 定量資料

(罹病等級vs產量)

轉換使呈常態

(簡單)相關

定性(等級)資料 vs 定性(等級)資料

(罹病等級vs倒伏程度)

───────────(簡單)相關

等**炒**使主吊悲

不轉換

Spearman順位相關

(非介量法)

定性(名義)資料 vs 定量資料 (葉色vs產量)

(無法行任何相關

(3) 勿太倚賴相關的顯著性

■ 相關係數不顯著,不表示兩變數間沒有關係

→表示兩變數間沒有顯著的「直線」關係,但無法 證明其間沒有其他更複雜的非線性關係

不正確結論:(a)X,Y互相獨立;(b)X,Y之間無任何關係

正確結論:X,Y間無(對稱增加)直線關係

■受到樣本數極大的影響

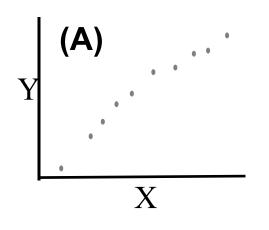
→ 通常樣本數愈小,r值愈大(只有兩點時r必定為1), 但若樣本數太多,常導致r值不大但顯著

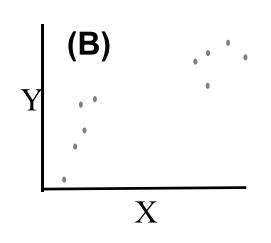
動動腦-2

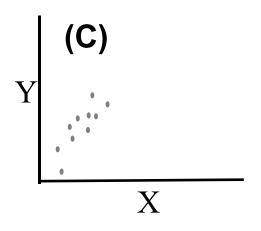
相關分析的分析點數(觀測個數,n) 最好落在哪個範圍最適合?

難有定論,端視分析資料的變異性及範圍是否足以 看出兩變數間關係而定一先繪製散佈圖可約略拿捏

例如以下同樣都是10個分析點數,您覺得夠嗎?







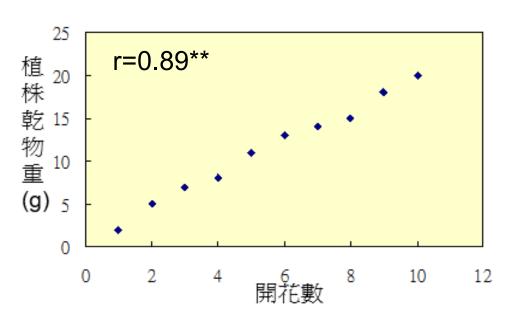
2.3 相關分析結果發表的正確呈現

僅有兩個變數之場合

可有以下兩種表達方式:

- ▶ 在內文中僅以文字描述,例如:植株乾物重與開花數間的相關係數(r)為0.89**,呈現極顯著的正向關係,表示植株乾物質愈重,其開花數愈多
- ➤以散佈圖呈現,圖中標示 r值及其顯著性星號(置於 r值右側),並於內文闡述 分析結果所代表的意義

相關係數一般四捨五入取至小數點後兩位即可



多個變數兩兩間之場合

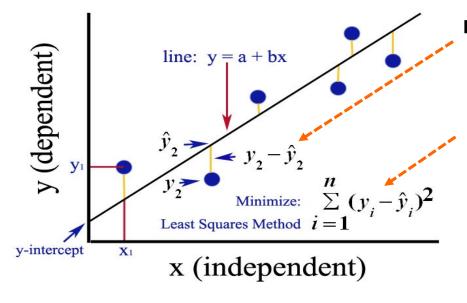
以相關矩陣形式呈現,顯著星號直接標示於相關係數右側,並於表下註明用以分析的觀測個數(n)。例如下表。 (上或下三角矩陣皆可,對角線都是1可略去)

	植株乾物重	開花數	結果數	果實重
植株乾物重				
開花數	0.86**			
結果數	0.67*	0.90**		
果實重	0.25	0.33	-0.71*	
n=10				

一般相關係數取自小數點後兩位即可,可讓表格看起來簡潔

3.回歸分析

「回歸」一詞源於1885年英國優生學家高登(Sir F. Galton) 論文 "Regression towards mediocrity in hereditary stature",他檢視兒童身高對應其父母身高,發現身高超過平均之父母的孩子身高通常也超過平均,但並沒有父母那麼高,他稱這種現象為「朝平均數(中間值)回歸」,意思是往回走。



- 日每個實際值(觀測點)與回歸估計值(觀測點對應到回歸線上的值)之間的差距,稱為**殘差(residual)** $y_i \hat{y}_i = e_i$
- **殘差平方和**代表無法以回歸估計式 解釋的程度(偏差程度);當所有觀測 點都在線上時,殘差平方和=0

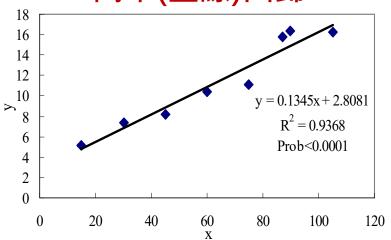
殘差平方和最小下估計出回歸係數, 即最小平方法

- R²=1-殘差平方和/總平方和,稱為決定係數(coefficient of determination) 或 複相關係數(multiple correlation coefficient),值在0與1之間,表示總變異中 利用回歸式所能解釋之變異所佔比例,用來判斷回歸估計式的解釋能力
- 當觀測個數n不太小時,R²愈接近1,表示對該模式愈滿意

回歸的型態

直線、非線性回歸:僅有一個解釋變數 X 複回歸:多個解釋變數 X₁、X₂、X₃.....

簡單(直線)回歸

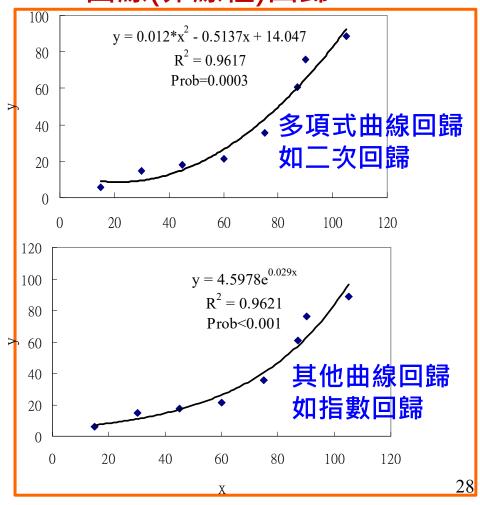


複回歸

 $Y=10.2+0.4X_1+0.8X_2$ $R^2=0.81$, Prob=0.015

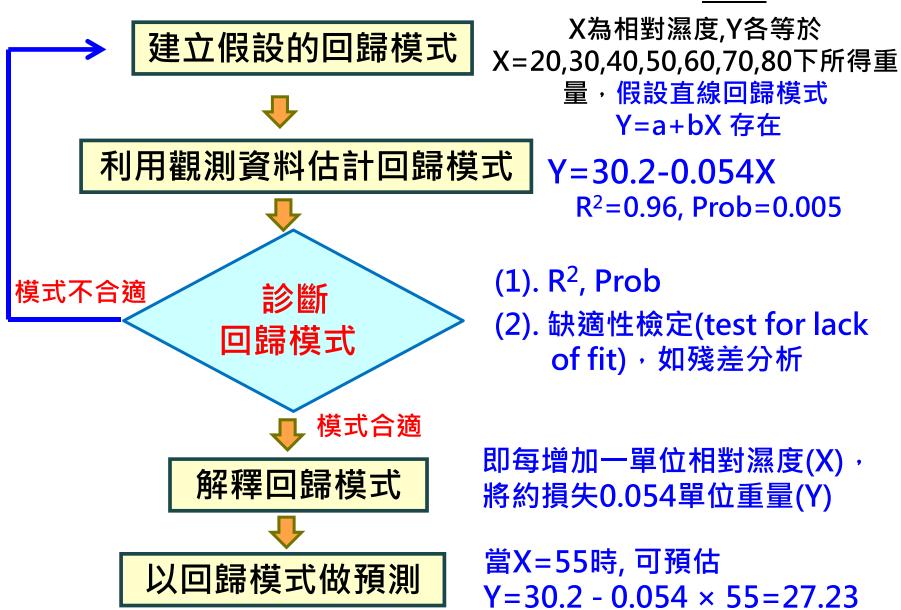
只有兩個解釋變數,尚可用3D立體圖繪製回歸圖,但含3個以上解釋變數則無法繪製回歸圖

曲線(非線性)回歸



回歸分析的步驟

範例



3.1 簡單(直線)回歸

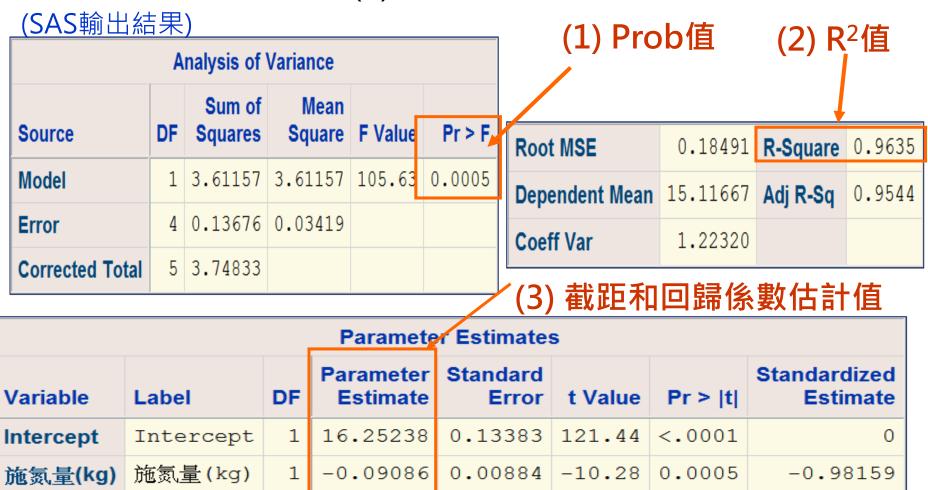
測定單一解釋變數(X)對反應變數(Y)的線性影響程度 {Y符合常態隨機,而假設X為固定值}

Y=a+bX 其中 a 為截距 (intercept) b 為回歸係數 (regression coefficient)

回歸式估計結果的判斷步驟:

- (1) 模式的顯著性機率值(Prob), 顯著(<0.05)或極顯著 (<0.01),表示該模式存在機率很高;若不顯著 (>0.05),則無須再看以下步驟(2)和(3)
- (2) 決定係數R²值愈接近於1,表示模式滿意度愈高
- (3) 當模式顯著且R²值愈高時,可取截距與回歸係數的估 計值寫入方程式中

【例4】欲探討水梨果園施用6種氮肥量(X)對梨果可溶性 固形物含量(Y)之影響程度,並假設是直線關係

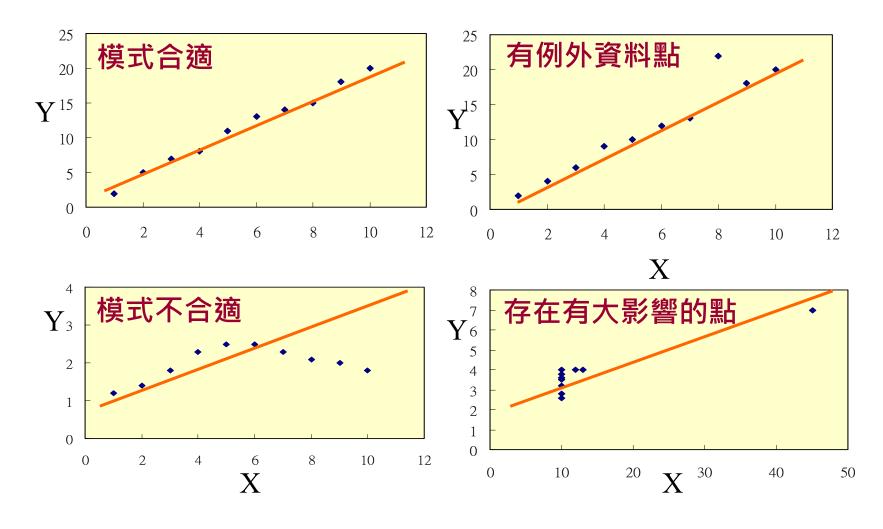


結論:回歸式為 Y=16.2524-0.0909X, R²=0.96, Prob=0.0005 或寫成 Y=16.2524-0.0909**X, R²=0.96

(直線回歸模式中只有一個回歸係數,模式顯著即代表該回歸係數顯著)

但有時候會發生Prob和R²都能接受 但模式其實不適合的情況

以下四種模式分別配合簡單回歸模式結果,從回歸式、R²到各種平方和的差異都很小,可見由此等訊息並不能幫助我們進行回歸診斷,還必須利用其他一些專門的統計量和直接對<mark>殘差</mark>進行分析



回歸模式的統計前提

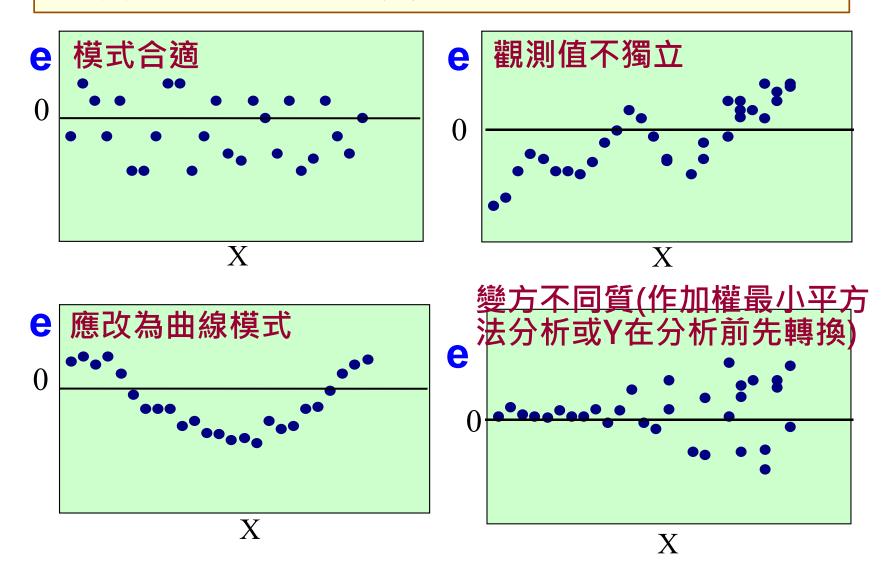
- 参 獨立性(independence):
 - 回歸模式的殘差項要互相獨立
- **常態性**(normality):
 殘差項要服從常態分布
- 参線性關係(linearity):
 - 解釋變數與反應變數的標準化殘差,都要呈線性關係
- 参 變方同質(homogeneity of variance):
 - 解釋變數間的殘差變方要相同

除常態性外,其它統計前提可用「殘差分析」進行檢驗

回歸診斷 - 殘差分析

利用繪製殘差圖 (殘差e vs X 或Y) 來檢驗獨立性

、線性結構及變方同質



3.2 曲線(非線性)回歸

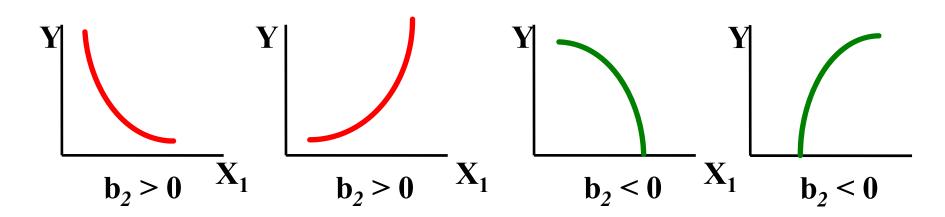
測定單一解釋變數(X)對反應變數(Y)的非線性影響程度 { Y符合常態隨機,而假設X為固定值}

(1)多項式曲線(polynomial curve)

估計式
$$y = a + b_1 x + b_2 x^2 + ... + b_k x^k$$

例如:二次回歸模式 $y=a+b_1x+b_2x^2$

 $(b_2 為 二次項,其正負決定曲線開口向上或向下)$



(2) 其他曲線回歸模式

❖實質線性:經適當變數轉換,如倒數、對數、平方根變換後 能改寫成線性模式之形式

例如:

(對數曲線)
$$y = ax_1^{b_1}x_2^{b_2}x_3^{b_3} \Rightarrow \ln y = \ln a + b_1 \ln x_1 + b_2 \ln x_2 + b_3 \ln x_3$$

(指數曲線)
$$y = ab^x \Rightarrow \ln y = \ln a + x \ln b_1$$

(Logistic生長曲線, S形曲線)
$$y = \frac{K}{1 + ae^{-bx}} \Rightarrow \ln(\frac{K - y}{y}) = \ln a - bx$$

(Logistic回歸模式,適於Y為二項變數之場合(如罹病-1,未罹病0)

$$y = \frac{e^{a+bx}}{1+e^{a+bx}} \Longrightarrow \ln(\frac{y}{1-y}) = a+bx$$

❖實質非線性

例如:
$$y = a + b_1 x^{-b_2 x}$$
 $y = a + b_1 x + b_2 (b_3)^x$ $y = a x_1^{b_1} x_2^{b_2} x_3^{b_3}$

- ▶ 針對多項式曲線回歸和實質線性曲線回歸,可先進行 變數轉換後(例如二次回歸: X²,指數或對數函數: LOG10或LN),再利用統計套裝軟體以線性形式(複回 歸或直線回歸)進行分析
- > 但很多統計軟體未必提供實質非線性回歸分析

以二次回歸為例

測定單一解釋變數(X)對反應變數(Y)的二次曲線影響關係 { Y符合常態隨機,而假設X_i為固定值}

$Y=a+b_1X+b_2X^2$ $Y=a+b_1X_1+b_2X_2$

其中 a 為截距 b1, b2為回歸係數

當統計軟體不直接提供曲線回歸時,通常可利用X²視為第二個新變數X₂, 然後再以複回歸形式進行分析

回歸式估計結果的判斷步驟:

- (1) 模式的顯著性機率值(Prob),顯著(<0.05)或極顯著 (<0.01),表示該模式存在機率很高;若不顯著 (>0.05),則無須再看以下步驟
- (2) 決定係數R²值愈接近於1,表示模式滿意度愈高
- (3) 當模式顯著且R²值愈高時,可取截距與回歸係數的 估計值寫入方程式中
- (4) 並將回歸係數顯著性結果以星號標示於係數旁

範例:前述【例4】欲探討水梨果園施用6種氮肥量(X)對梨果可溶性固形物含量(Y)之影響程度,並假設是二次曲線關係

吉果	!)			(1) Pro	(2) R ² 值			
A	nalysis of	Variance						
DF	Sum of Squares	Mean Square	F Value	Pr > F	Root MSE	0.17681	R-Square	0.9750
2	3.65455	1.82727	58.45	0.0040	Dependent Mean	15.11667	Adj R-Sq	0.9583
3	0.09379	0.03126			Coeff Var	1.16964		
5	3.74833				/(2)	和同島	後數仕	⇒∔街
	DF 2	Sum of Squares	Analysis of Variance Sum of Squares Mean Square	Analysis of Variance Sum of Square Mean Square F Value	Analysis of Variance Sum of Square Square F Value Pr > F≥	Analysis of Variance DF Sum of Squares Mean Square F Value Pr > F Root MSE 2 3.65455 1.82727 58.45 0.0040 Dependent Mean 3 0.09379 0.03126 Coeff Var 5 3.74833 Coeff Var	Analysis of Variance Sum of Squares Square F Value Pr > F Root MSE 0.17681	Analysis of Variance Sum of Squares Mean Square F Value Pr > F Root MSE 0.17681 R-Square 2 3.65455 1.82727 58.45 0.0040 Dependent Mean 15.11667 Adj R-Sq 3 0.09379 0.03126 Coeff Var 1.16964

	Parameter Estimates							
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate		
Intercept	Intercept	1	16.13929	0.16025	100.71	<.0001	0	
施氮量(kg)	施氮量(kg)	1	-0.05693	0.03015	-1.89	0.1554	-0.61504	
施氮量-二次	施氮量-二次	1	-0.00136	0.00116	-1.17	0.3256	-0.38187	

(4) 回歸係數顯著性 (截距顯著性不重要)

結論:二次回歸不成立

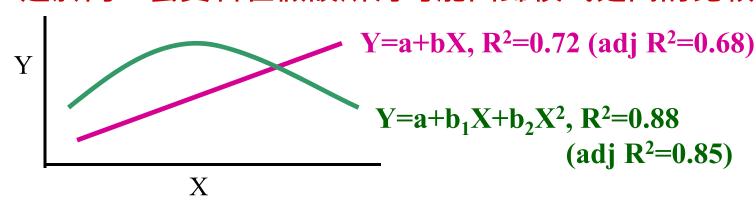
(雖模式Prob極顯著且R²也甚高,但兩個回歸係數並不顯著)

同一套資料集配合不同回歸模式的選擇準則 -- 矯正(adjusted) R²

Root MSE	0.18491	R-Square	0.9635	
Dependent Mean	15.11667	Adj R-Sq	0.9544	D
Coeff Var	1.22320			

$$R_{adj}^2 = 1 - [(1 - R^2) \frac{n - 1}{n - k - 1}]$$

- 當模式中的解釋變數愈多,R²值也會愈高,應採用矯正R² 來比較不同模式的滿意度
- R²是一種矯正值,可反映出解釋變數之數目(k)和樣本大小(n),通常<R²
- 適於同一套資料在假設所有可能回歸模式之間的比較



Select which model?

同一資料集配合不同回歸式之結果,視**矯正R**²高低而取捨,但若R²增進有限,除非要求預測準確度極高,否則應考量 選擇含有較少解釋變數之模式,避免模式因過於複雜而不 利解釋

[例A]

Y=a+bX, adj $R^2=0.62$

 $Y=a+b_1X+b_2X^2$, adj $R^2=0.89$ $\sqrt{ }$

 $Y=a+b_1X+b_2X^2+b_3X^3$, adj $R^2=0.91$

[例B]

Y=a+bX, adj $R^2=0.86$ $\sqrt{ }$

 $Y=a+b_1X+b_2X^2$, adj $R^2=0.89$

 $Y=a+b_1X+b_2X^2+b_3X^3$, adj $R^2=0.90$

但仍須注意:

- (1)分析點數不可太少
- (2)由殘差分析結果,殘差分布須隨機分散

3.3 複回歸(多元回歸)

測定多個解釋變數 $(X_1,...X_k)$ 對反應變數(Y)的綜合影響 $\{ Y符合常態隨機,而假設<math>X_i$ 為固定值 $\}$

$$Y=a+b_1X_1+....b_kX_k$$

其中 a 為截距 b1,..,bk為回歸係數

回歸式估計結果的判斷步驟:

- (1) 模式的顯著性機率值(Prob),顯著(<0.05)或極顯著 (<0.01),表示該模式存在機率很高;若不顯著 (>0.05),則無須再看以下步驟
- (2) 決定係數R²值越接近於1,表示模式滿意度越高
- (3) 當模式顯著且R²值越高時,可取截距與回歸係數的 估計值寫入方程式中
- (4) 並將回歸係數顯著性結果以星號標示於係數旁
- (5) 通常會考慮剔除VIF(variance inflation) > 10或共線性 診斷 > 100的變數

複回歸的共線性問題

- ▶ 許多研究人員在進行回歸分析時,常常對於解釋變數之間 的相關性沒有審慎評估,就貿然將許多個解釋變項同時放 到回歸方程式內
- ➤ 當複回歸模式中解釋變數之間有太高的相關時,由於在估計回歸係數的運算過程中會導致數理上所稱的奇異性 (singularity),就會產生一些「不合理」現象,造成估計值的不穩定,或是回歸係數與相關係數正負符號不一致等問題,這些稱為共線性(collinear 或 multicollinear)問題
- ▶ 共線性是一種程度的問題(degree of matters),而不是全有或全無(all or none)的狀態,應盡量消除它

共線性造成的困擾

【例5】收集某公司 12 位員工的年齡(X1)和年資(X2)對薪資(Y)的影響

所得複回歸式 Y = 69.315 - 0.796X1 + 2.889X2, $R^2 = 0.70$, Prob = 0.0045 但兩兩變數相關係數 r(Y,X1) = 0.81**, r(Y,X2) = 0.83**, r(X1,X2) = 0.98**

X1與X2間的高度相關(共線性),常造成以下問題:

(1) 回歸係數與相關係數符號不一致的困擾

上式中X1 回歸係數為負,表示年齡越大其薪資越少,這與 Y 和 X1之相關係數為正,看起來矛盾!

(2) 回歸係數檢定不顯著的困擾

上述整個模式雖極顯著,但兩回歸係數卻不顯著。解釋變數間有很高相關(如本例X1與X2),常發現回歸係數檢定不顯著,此意味著該解釋變數可不放入模式內。事實上這是可理解的,因其中一個先進入模式中就無須再放入第二個變數。但初學者時常以為兩個解釋變數皆不顯著,便誤認它們對反應變數Y都沒有貢獻,其實只要放入其中一個解釋變數即可,不需要兩個都進入模式。

共線性檢驗方法

- (1) 變異數膨脹因子(variance inflation factor, VIF)
- (2) 共線性診斷(collinearity diagnostics)

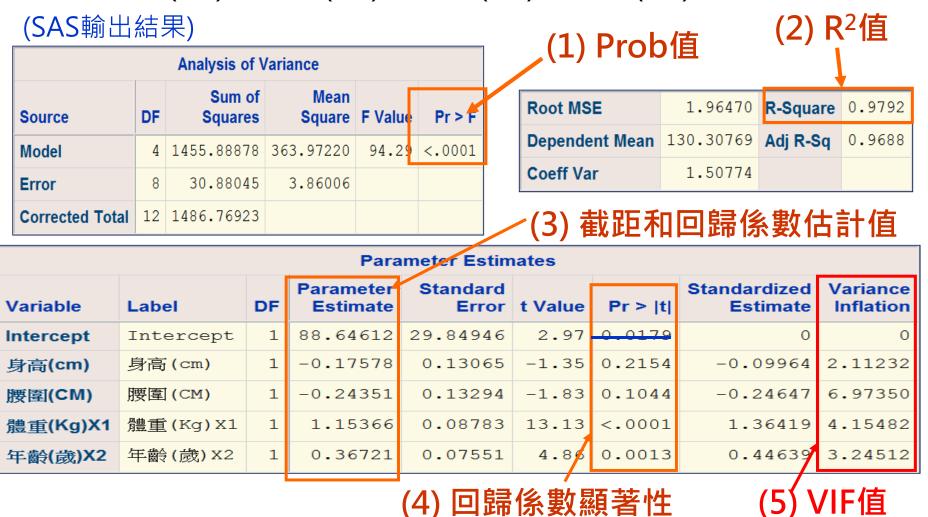
當某解釋變數與其他解釋變數關係密切時,其 VIF或共線性診斷之條件索引(condition index)的值也大,表示該解釋變數幾乎是其他解釋變數的線性組合,因此可考慮將它從模式中剔除。一般以VIF>10或共線性診斷之條件索引>100時,表示有共線性問題

Weight_log這個解 釋變數的VIF雖<10 但共線性診斷之條 件索引高達448, 建議從模式剔除

参数估計值								
 半 数	標 載	自由度	参数 估計值	標準 誤差	t值	Pr > t	幾異數 膨脹	
Intercept	Intercept	1	-4.07761	0.62034	-6.57		0	
Invoice		1	-0.00000724	0.00000166	-4.36	<.0001	3.30752	
Cylinders		1	0.11465	0.00835	13.73	<.0001	3.06662	
Horsepower		1	0.00161	0.00024256	6.64	<.0001	4.25340	
Wheelbase	Wheelbase (IN)	1	-0.00359	0.00183	-1.96	0.0511	6.16558	
MPG_Highway	MPG (Highway)	1	-0.00283	0.00182	-1.56	0.1205	3.28522	
Length	Length (IN)	1	0.00430	0.00091700	4.69	<.0001	5.08111	
Weight log		1	0.49403	0.08668	5.70	<.0001	8.25953	

		1			共課性	生診斷	- Page 10 To 10				
000000000000000000000000000000000000000		條件 索引		變異的比例							
數目	4-2 特徵值	索引	Intercept	Invoice	Cylinders	Horsepower	Wheelbase	MPG_Highway	Length	Weight_log	
1	7.80881	1.00000	0.00000145	0.00036191	0.00026551	0.00024334	0.00001436	0.00019255	0.00001926	0.00000113	
2	0.13702	7.54927	0.00002659	0.03336	0.01124	0.02157	0.00004655	0.04024	0.00007373	0.00001103	
3	0.02934	16.31402	0.00000347	0.43108	0.13590	0.00054771	0.00124	0.04766	0.00216	0.00000903	
4	0.01164	25.90010	0.00007690	0.13084	0.66311	0.50767	0.00164	0.02929	0.00160	0.00006024	
5	0.01014	27.75301	0.00047081	0.13087	0.11675	0.44766	0.00813	0.34973	0.00811	0.00052278	
6	0.00239	57.11399	0.01207	0.08051	0.04672	0.01615	0.05268	0.10316	0.14520	0.00575	
7	0.00061722	112.47895	0.00137	0.00411	0.00771	0.00000901	0.79586	0.02213	0.82051	0.00011870	
8	0.00003890	448.05712	0.98598	0.18887	0.01832	0.00615	0.14038	0.40760	0.02231	0.99352	

【例6】研究身高大致相同的13位男人血管收縮壓(Y)與受到身高(X1)、腰圍(X2)、體重(X3)和年齡(X4)的影響程度



結論:回歸式為Y=88.65-0.18X1-0.24X2+1.15**X3+0.37**X4 R²=0.98, Prob<0.0001 /(5)共線性診斷之條件索引

		(0)) (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(
	Collinearity Diagnostics									
	Condition				Proportion of Variation					
Variable	Number	Eigenvalue		Intercept	身高(cm)	腰圍(CM)	體重(Kg)X1	年齡(歲)X2		
Intercept	1	4.85582	1.00000	0.00001411	0.00002606	0.00010598	0.00034918	0.00116		
身高(cm)	2	0.13198	6.06560	.300107E-7	0.00000571	0.00237	0.01335	0.15165		
腰圍(CM)	3	0.00955	22.55338	0.00478	0.01991	0.00085563	0.37952	0.39371		
體重(Kg)X1	4	0.00244	44.64628	0.00208	0.03971	0.67255	0.58222	0.21169		
年齡(歲)X2	5	0.0002153	150.15598	0.99312	0.94034	0.32411	0.02456	0.24180		

除年龄(X4)外其餘變數皆<100

表示年龄(X4)這個解釋變數的VIF雖<10但共線性診斷之條件索引大於150,存在共線性問題,建議從模式剔除

	身高(X1)	腰圍(X2)	體重(X3)	年龄(X4)	血壓(Y)
身高(X1)					
腰圍(X2)	-0.68**				
體重(X3)	-0.66**	0.86**			
年龄(X4)	0.43	-0.81**	-0.70**		
血壓(Y)	-0.64**	0.64**	0.90**	-0.36	

年龄(X4)與腰圍(X2) 體重(X3)間存在極顯 著負相關,但與血壓 (Y)無顯著相關 前例倘一開始<u>若不考慮共線性問題</u>,同時納入四個解釋變數所估得的回歸式為

Y=88.65-0.18X1-0.24X2+1.15**X3+0.37**X4

R²=0.98, Prob<0.0001

其中X1(身高)、X2(腰圍)兩個解釋變數的回歸係數不顯著, 意味著這兩個變數對Y的貢獻度不高

注意! 不可以將回歸係數不顯著的解釋變數從原回歸式中直接移除。必須將資料集剔除不顯著變數資料後,再重新分析,以獲得新回歸式

進而不考慮這兩個解釋變數,重新進行Y(血壓)與X3(體重)、 X4(年齡)之複回歸分析,結果如下:

Y=39.99+1.09**X3+0.46**X4, $R^2=0.98$, Prob<0.0001

前例若一開始就**將存在共線性的年齡(X4)不納入**,三個解釋變數所估得的回歸式為

Y=169.16-0.36X1-0.64**X2+1.12**X3, R²=0.92, Prob<0.0001

其中X1(身高) 回歸係數不顯著,意味著該變數對Y的貢獻度不高

進而不考慮這個解釋變數,重新進行Y(血壓)與X2(腰圍)、X3(體重)之複回歸分析,結果如下:

Y=97.59-0.56*X2+1.18**X3, $R^2=0.90$, Prob<0.0001

共線性移除後,X2(腰圍)的貢獻重要性就凸顯出來了

該複回歸式也不存在共線性問題:(兩解釋變數的VIF<10且共線性診斷之條件索引<100)

變數	自由度	參數 估計值	標準 誤差	t值	Pr > t	變異數 膨脹
Intercept	1	97.58628	8.61286	11.33	<.0001	0
腰圍(CM)	1	-0.55975	0.20086	-2.79	0.0192	3.95926
體重(Kg)	1	1.17746	0.17193	6.85	<.0001	3.95926

共線性診斷								
		條件	變異的比例					
數目	特徵值	索引	Intercept	腰圍(CM)	體重(Kg)			
1	2.97890	1.00000	0.00179	0.00050393	0.00099748			
2	0.01818	12.80141	0.51344	0.00378	0.19873			
3	0.00292	31.91729	0.48477	0.99571	0.80027			

Y=97.59-0.56*X2+1.18**X3, $R^2=0.90$, Prob<0.0001

結果闡釋:

X2(腰圍)與X3(體重)都對Y(血壓)有影響,在體重固定情形下

- ,每增加腰圍1單位,血壓減少0.56單位;在腰圍固定情形下
- ,每增加1單位體重,血壓增加1.18單位

預測範例:

當 X2=85cm 且 X3=60kg 時,可預估 Y = 97.59 - 0.56×85 + 1.18×60 = 120.79 mm/Hg

只能內插預測!即X2 與X3用以預測的數據 都必須落在該兩變數 原資料範圍內

複回歸分析的最佳模式選擇

~~決定模式中應納入哪些解釋變數的方法~~

常見方法如下:

♦ 所有可能回歸模式法

將所有可能的回歸模式皆考慮,再依一些準則 (如R²、矯正R²、C(P)、預測平方和PRESS等統計量) 來選擇變數

♦ 順向選擇法

選定一個標準,開始式中沒有解釋變數(常數項除外),按解釋變數對Y的貢獻度由大到小依序挑選進入式中,直到沒有變數可被引入為止

❖ 反向剔除法

選定一個標準,開始將所有變數均放入式中,按解釋變數對 Y 的貢獻由小到大依序剔除變數,直到沒有變數可被剔除為止

🍄 逐步回歸法

結合順向選擇法與反向剔除法兩種方式的優點

3.4 逐步回歸

Stepwise regression

逐步回歸不是某種回歸型態,而是複回歸分析中的一種最佳模式選擇方法---適合解釋變數甚多的場合

❖ 分析原理:

- (1)選定一個標準 【通常在SAS中解釋變數的進入標準(F機率值) 為0.15,剔除標準則為0.15】
- (2)開始方程式中沒有解釋變數(常數項除外),按解釋變數對Y的 貢獻度由大到小依序挑選進入式中 【順向選擇】
- (3)在每一步驟已被納入的解釋變數,再按解釋變數對Y的貢獻度由小到大依序將變數剔除 【反向剔除】
- (4)直到方程式外的變數均達不到入選標準,沒有解釋變數可被納入式中為止
- ◆ 回歸式估計結果的判斷步驟:如同複回歸分析之五個步驟

如前述<u>【例6】血壓資料</u>,當處理共線性問題將年齡變數(X4) 先從模式中剔除後,再配合用逐步回歸法來看選定的最佳模型

,其結果如下:

3 0.00292 31.91729

變異數分析								
			平均值					
來源	自由度	平方和	平方	F值	Pr > F			
模型	2	1331.55083	665.77541	42.89	<.0001			
誤差	10	155.21840	15.52184					
已校正的總計	12	1486.76923						

		(—) 1-	
根 MSE	3.93978	R 平方	0.8956
應變平均值	130.30769	調整R平方	0.8747
變異係數	3.02344		

(2) R²值

(3) 截距和回歸係數估計值

參數估計值 變異數 標準 參數 膨脹 t 值 | Pr > |t| 變數 自由度 估計值 誤差 Intercept 1 97.58628 8.61286 11.33 < .0001 -0.55975 | 0.20086 | -2.79 | 0.0192 | 3.95926 腰圍(CM) 6.85 < .0001 3.959261.17746 0.17193 體重(Kg)

0.48477

(4) 回歸係數顯著性

(5) VIF值

(1) Prob值

世線別連線性診斷之條件素引 條件 數目 特徴値 索引 Intercept 腰圍(CM) 體重(Kg) 1 2.97890 1.00000 0.00179 0.00050393 0.00099748 2 0.01818 12.80141 0.51344 0.00378 0.19873

0.99571

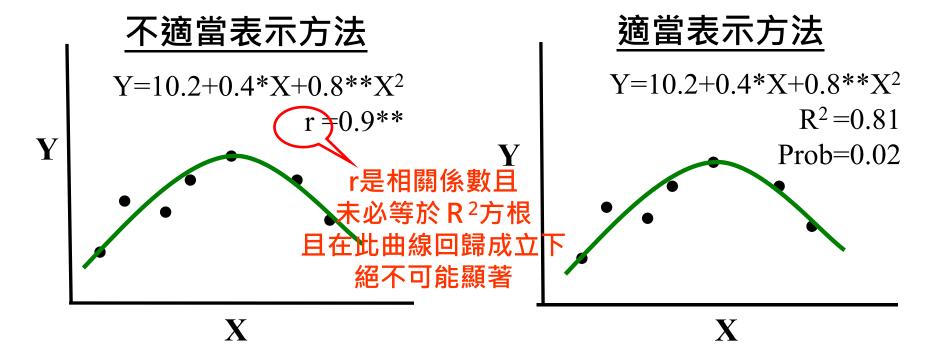
0.80027

Y=97.59-0.56*X2+1.18**X3, R²=0.90, Prob<0.0001

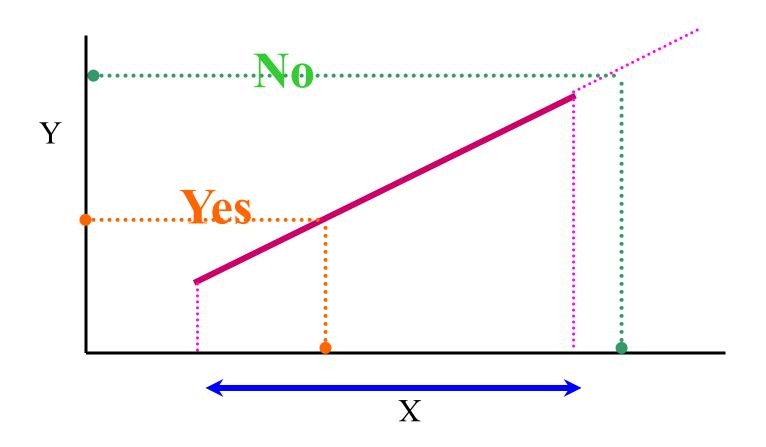
3.5 回歸的濫用及誤用

(1)當心回歸分析之決定係數(R2)的意義

- ➤ R² 用來檢測回歸配合的適合度: R²愈接近 1 · 表示回 歸方程式愈有效
- ➤ 直線回歸時R²恰為簡單相關係數r的平方值,但**複回歸** 的R²的開方根並不等於r

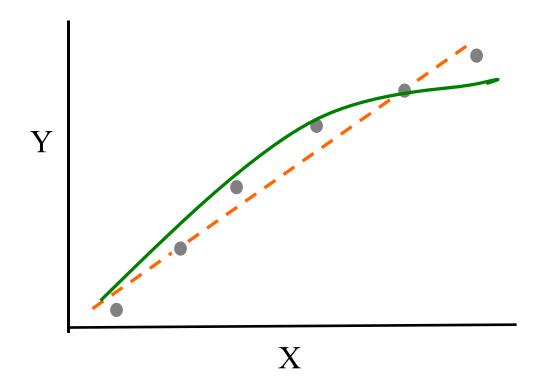


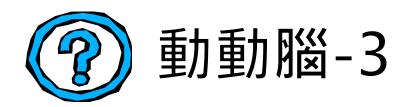
(2)回歸方程式僅限於內插預測



(3)注意分析點數太少的迷思

當分析點數太少時,任何回歸配合都會顯得很滿意(無論直線?曲線?R²都很高!!),但其實此時的可信度都不高,故不宜貿然取最高R²的回歸關係作為結論

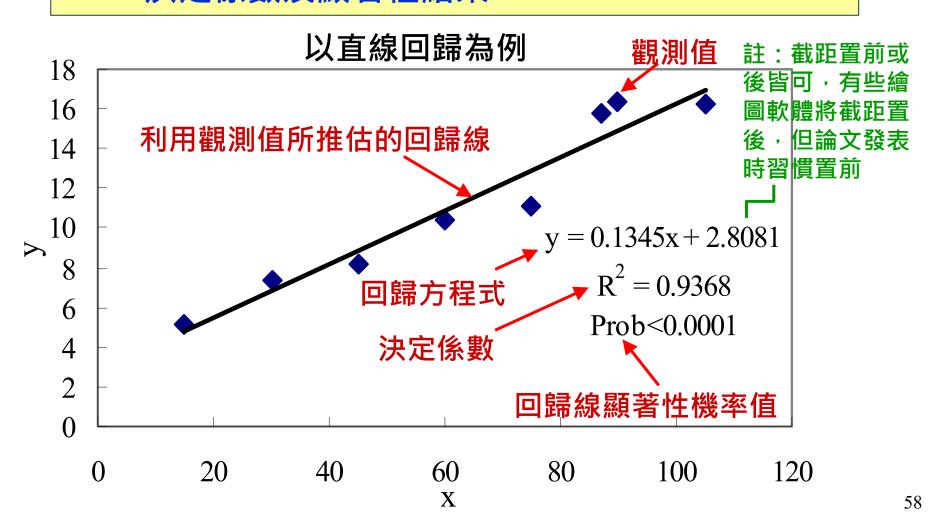




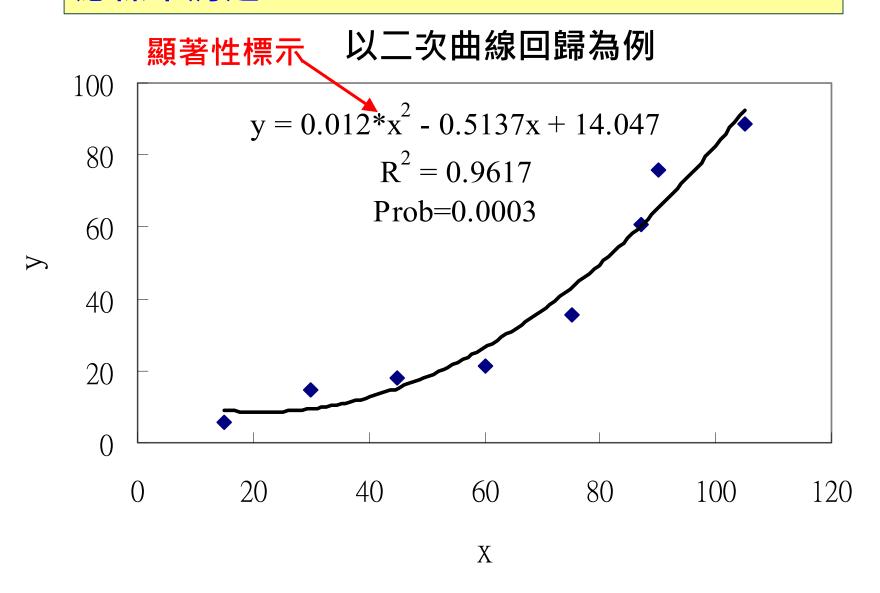
回歸分析最少需要幾個 分析點數(觀測個數,n)才可信?

3.6 回歸分析結果發表的正確呈現

- ✓ SCI期刊論文通常要求高品質的回歸線圖
- ✓ 回歸線圖內應包含:觀測值點、回歸線、回歸式
 - 、決定係數及顯著性結果



多項式回歸或複回歸的方程式中各係數顯著性應標示清楚



Thanks for Your Attention

動動腦-1【解答】

- ▶ 用「相關」或「回歸」?
- ➤ 當使用回歸時,何者是「反應變數(Y)」或「解釋變數(X)」?
 - 樹齡 VS 樹高
 - → 相關 → 隨機調查10棵樹的兩個數量性狀(符合常態) 回歸 (Y: 樹高, X: 樹龄) → 假設選定X=1、2、....年樹龄時分別調查 其樹高 Y , 此時X可視為可控制的固定值
 - 體重 *VS* 血壓 ➡ 相關 回歸 (Y: 血壓, X: 體重)
 - 汽油價格 *vs* 搭捷運乘人數 → 相關回歸 (Y: 搭乘人數, X: 油價)
 - 殺草劑濃度 *vs* 雜草死亡率 → 回歸 (Y: 死亡率, X: 濃度)

殺草劑濃度X為固定值,不會是常態隨機變數

● 盤固草產量 VS 氣象因子 → 回歸 (Y: 產量, X: 氣象因子)

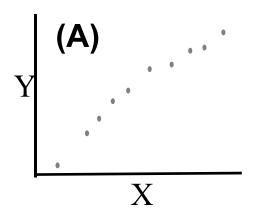
氣象因子X (如溫度、日照時數等)為固定值,不會是常態隨機變數

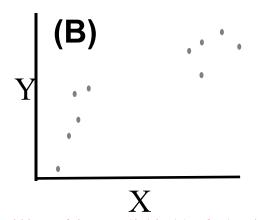
動動腦-2【解答】

相關分析的分析點數(觀測個數,n) 最好落在哪個範圍最適合?

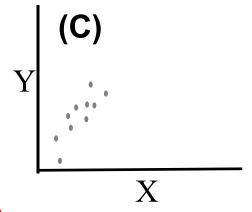
難有定論,端視分析資料的變異性及範圍是否足以 看出兩變數間關係而定一先繪製散佈圖可約略拿捏

例如以下同樣都是10個分析點數,您覺得夠嗎?





X變異範圍或許夠廣但集中於兩端,且Y在同樣X值下變異較大,建議增加分析點數,尤其補充X範圍中間數值



建議擴大X變異範圍

動動腦-3【解答】

回歸分析最少需要幾個分析點數(觀測個數,n) 才可信?

難有定論,端視分析資料的變異性及範圍

- ➤ 實驗室要取得標準曲線(檢量線), 因都是標準樣本,通常實驗室認證SOP只要求5個樣本即可。
- ➤ 但若是其他試驗場合,在直線回歸模式假設下最好建議至少 8個點,這與變方分析(ANOVA)中殘差自由度n-2最好不小於 6有關(以前試驗設計講習課程曾講過最少重複的計算問題); 若是更複雜的曲線回歸或複回歸,分析點數就要更多。
- ▶ 但這並非絕對,要看回歸估計式是要用來探討趨勢而已,還 是要用來做精確預測,後者所需分析點數應更多。
- 不管如何,當n較少時,即便估得回歸式,在結果闡釋上就應該更保守。